System Controlling: PID Controller

Thursday, August 30, 2012

PID Controller

After the On/Off controller the most basic controller is the PID(proportional–integral–derivative controller) controller. Some application only require to use only one or two actions to build up the appropriate system controller.

The following form is the PID controller in continuous time: $$\mathrm{u}(t)=K_p{e(t)} + K_{i}\int_{0}^{t}{e(\tau)}\,{d\tau} + K_{d}\frac{d}{dt}e(t)$$ where
  • \(K_p\): Proportional gain, a tuning parameter
  • \(K_i\): Integral gain, a tuning parameter
  • \(K_d\): Derivative gain, a tuning parameter
  • \(e\): Error = Defined Value - Measured Value
  • \(t\): Time or instantaneous time (the present)
In many cases, if we want to implement the PID controller on a microcontroller or PLC we need the discretized form of the controller. In the following way we can approximate the derivate and the integrate terms of the controller.

$$\int_{0}^{t_k}{e(\tau)}\,{d\tau} = \sum_{i=1}^k e(t_i)\Delta t$$ The derivative term is approximated as, $$\dfrac{de(t_k)}{dt}=\dfrac{e(t_k)-e(t_{k-1})}{\Delta t}$$

$$u(t_k)=u(t_{k-1})+K_p\left[\left(1+\dfrac{\Delta t}{T_i}+\dfrac{T_d}{\Delta t}\right)e(t_k)+\left(-1-\dfrac{2T_d}{\Delta t}\right)e(t_{k-1})+\dfrac{T_d}{\Delta t}e(t_{k-2})\right]$$

We can use the following form
$$u(t_k)=K_p e_k+K_I[(e_{k} + e_{k-1})T_s]+K_d\frac{e_k-e_{k-1}}{T_s}$$ 
You can find a PID implementation in python under the following link:PID
class PID:
 def __init__(self, KP=2.0, KI=10.0, KD=0.001, I_max=1000, I_min=-1000, U_max=500, U_min=-500):
  """
  @summary: Initializing the PID controller parameters
  Discrete implementation of the PID controller. If you want a P or PI controller 
  just set the I,D to 0
  
  @param KP: Proportional gain
  @param KI: Integral gain
  @param KD: Derivative gain
  @param U_max: The maximum output signal 
  @param U_min: The minimum output signal
  @param I_max: The maximum integral value 
  @param I_min: The minimal integral value
  
  @return: The control signal 
  """
  self.Kp = KP
  self.Ki = KI
  self.Kd = KD
  
  self.I_max = I_max
  self.I_min = I_min
  
  self.U_max = U_max
  self.U_min = U_min
  
  self.__error  = 0.0
  
  self.__integral  = 0
  self.__derivative = 0
  
  self.__dt = 0;
  
 def run(self, error, Ts = None):
  """
  @summary: Updating the PID controller parameters
  
  @param error: The error between the predefined value and the measured value
  @param Ts: Sampling time.
  
  @return: The control signal  
  """ 
  #The sampling time
  if not self.__dt:
   self.__dt = self.__gettime();
  
  if(Ts is None):
   dt = self.__gettime() - self.__dt
  else:
   dt = Ts
  #Storing the time in seconds
  self.__dt = self.__gettime()
  
  #Calculate the integral
  self.__integral  =  self.__integral + (error * dt)
  #Upper limit
  if(self.__integral > self.I_max):
   self.__integral = self.I_max
  #Down limit
  if(self.__integral < self.I_min):
   self.__integral = self.I_min
   
  #Calculate the derivate
  self.__derivative =  self.Kd * ( error - self.__error ) / dt
  
  #Storing the error
  self.__error   =  error
  
  #Sum
  U =  self.Kp * error +  self.Ki * self.__integral + self.__derivative
  
  #Signal limitation
  if(U > self.U_max):
   U = self.U_max
  if(U < self.U_min):
   U = self.U_min
   
  return U
 
 def __gettime(self):
  """
  @summary : On the Windows OS and the Linux OS has a different function to
  get the precious time, this function will handle this and according the OS returns the
  precious time.   
  """
  if sys.platform == "win32":
   # On Windows, the best timer is time.clock()
   default_timer = time.clock
  else:
   # On most other platforms the best timer is time.time()
   default_timer = time.time
  return default_timer()

3 comments:

  1. I notice you use double-underscores to prefix some variable names. Why is this?

    ReplyDelete
    Replies
    1. In this way I defined the 'protected' variables/functions.

      Delete
    2. Also I have to mention that in Python doesn't have protected variables/functions.Still there are possibilities to reach this variables outside the class.

      Delete